Lesson 18: Compatibility between two tensors

Compatibility of two Tensors for Arithmetic Operation

Two tensors x and y are said to be compatible if

Compatibility of two Tensors for Arithmetic Operation

Two tensors x and y are said to be compatible if

- Their dimensions and shapes are same
- Dimension(x) = Dimension(y)
- Shape(x) = Shape(y)

1	7	3		1	7	3		?	4	f	ร
1	\bigcirc	3	+	4	5	6		5	7	9	9

```
    X (2d array): 2 x 4
    Y(2d array): 2 x 4
Result (2d array): 2 x 4
```


Compatibility of two Tensors for Arithmetic Operation

Two tensors x and y are said to be compatible if

- Their dimensions and shapes are same
- Dimension(x) = Dimension(y)

```
    X (2d array): 2 x 4
    Y (2d array): 2 x 4
```

Result (2d array): 2 x 4

```
```

```
Result (2d array): 2 x 4
```

```
- Shape(x) = Shape(y)
- Their dimensions or shapes are different, but the following condition is satisfied.
- For all dimension position, one of component dimension has shape 1.
```

 X (2d array): 2 x 1
 Y(2d array): 2 x 4
 Result (2d array): 2 x 4

```

\section*{Compatibility of two Tensors for Arithmetic Operation}

Two tensors \(x\) and \(y\) are said to be compatible if
- Their dimensions and shapes are same
- Dimension(x) = Dimension(y)
```

 X (2d array): 2 x 4
 Y (2d array): 2 x 4
    ```
Result (2d array): 2 x 4
```

```
```

Result (2d array): 2 x 4

```
```

- Shape(x) = Shape(y)
- Their dimensions or shapes are different, but the following condition is satisfied.
- For all dimension position, one of component dimension has shape 1.

```
X (2d array): 2 x 1
Y (2d array): 
Result (2d array): 2 x 4
```

```
    X (3d array): 2 x 1 x 3
    Y (3d array): 2 x 4 x 1
Result (3d array): 2 x 4 x 3
```


Compatibility of two Tensors for Arithmetic Operation

Two tensors x and y are said to be compatible if

- Their dimensions and shapes are same
- Dimension(x) = Dimension(y)

```
    X (2d array): 2 x 4
    Y (2d array): 2 x 4
```

Result (2d array): 2 x 4

```
```

```
Result (2d array): 2 x 4
```

```
- Shape(x) = Shape(y)
- Their dimensions or shapes are different, but the following condition is satisfied.
- For all dimension position, one of component dimension has shape 1.
```

X (2d array): 2 x 1
Y (2d array): 2 x 4
Result (2d array): 2 x 4

```
```

 X (3d array): 2 x 1 x 3
 Y (3d array): 2 x 4 x 1
 Result (3d array): 2 x 4 x 3

```
X (3d array): \(2 \times 1 \times 3\)
    Y (3d array): \(1 \times 4 \times 1\)
Result (3d array): \(2 \times 4 \times 3\)

\section*{Compatibility of two Tensors for Arithmetic Operation}

Two tensors \(x\) and \(y\) are said to be compatible if
- Their dimensions and shapes are same
```

 X (2d array): 2 x 3
 Y(2d array): 2 x 4
 Result (2d array): 2 x 4

```
- Their dimensions and/or shapes are different, but the following condition is satisfied.
- For all dimension position, one of component dimension has shape 1.
```

 a: (2d array): 256 x 3
 b: (1d array): 3
 Result: (2d array): 256 x 3

```

\section*{Compatibility of two Tensors for Arithmetic Operation}

Two tensors \(x\) and \(y\) are said to be compatible if
- Their dimensions and shapes are same
```

 X (2d array): 2 x 3
 Y(2d array): 2 x 4
 Result (2d array): 2 x 4

```
- Their dimensions and/or shapes are different, but the following condition is satisfied.
- For all dimension position, one of component dimension has shape 1.
```

 a: (2d array): 256 x 3
 b: (1d array): We < W assume that, we have default 1.
 Result: (2d array): 256 x 3
(3) ~ (1 x 3)
(2 x 3)~ (1 x 2 x 3)

```

\section*{Compatibility of two Tensors for Arithmetic Operation}

Two tensors \(x\) and \(y\) are said to be compatible if
- Their dimensions and shapes are same
```

 X (2d array): 2 x 3
 Y(2d array): 2 x 4
 Result (2d array): 2 x 4

```
- Their dimensions and/or shapes are different, but the following condition is satisfied.
- For all dimension position, one of component dimension has shape 1.
```

 a: (2d array): 256 x 3
 b: (1d array): 3 ~
 Result: (2d array): 256 < 3 Result: (2d array): 256 < 3
a: (2d array): 256 < 3
b: (1d array): 1 < 3

```

\section*{Compatibility of two Tensors for Arithmetic Operation}

Two tensors \(x\) and \(y\) are said to be compatible if
- Their dimensions and shapes are same
\begin{tabular}{rllll} 
X (2d array): & 2 & \(x\) & 3 \\
Y (2d array): & 2 & \(x\) & 4 \\
Result (2d array): & 2 & \(x\) & 4
\end{tabular}
- Dimension(x) = Dimension(y)
- Shape(x) = Shape(y)
- Their dimensions and/or shapes are different, but the following condition is satisfied.
- For all dimension position, one of component dimension has shape 1.
\begin{tabular}{lrr} 
A (4d array): & \(8 \times 1 \times 6 \times 1\) \\
B (3d array): & \(7 \times 1 \times 5\) \\
Result (4d array): & \(8 \times 7 \times 6 \times 5\)
\end{tabular}

The resultant dimension is
- Higher dimension
- Higher shape of the component dimensions

They are not compatible
```

A (1d array): 3
B (1d array): 4 \# trailing dimensions do not match
A (2d array): 2 < 1
B (3d array): 8 x 4 x 3 \# second from last dimensions mismatched

```

\section*{Summary}
- Operations are performed element wise.
- If the shapes between the two tensors are different, but compatible, the tensor with smaller shape is stretched.```

